SOME CONSTRUCTION OF GROUP DIVISIBLE DESIGNS GDD(m,n;1,3)

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Construction of Divisible Designs from Translation Planes

We construct some classes of divisible designs from nite translation planes of dimension two and three over GF(q), q a prime power, admitting SL(2; q) as a collineation group.

متن کامل

Divisible designs with dual translation group

Many different divisible designs are already known. Some of them possess remarkable automorphism groups, so called dual translation groups. The existence of such an automorphism group enables us to characterize its associated divisible design as being isomorphic to a substructure of a finite affine space. AMS Classification: 05B05, 05B30, 20B25, 51N10

متن کامل

(3, Λ)-group Divisible Covering Designs

Let U, g, k and A be positive integers with u :::: k. A (k, A)-grOUp divisible covering design ((k, A)-GDCD) with type gU is a A-cover of pairs by k-tuples of a gu-set X with u holes of size g, which are disjoint and spanning. The covering number, C(k, A; gil), is the minimum number of blocks in a (k, A)-GDCD of type gUo In this paper, the detennination ofllie fimction C(3, A; gil) begun by [6]...

متن کامل

Resolvable Group Divisible Designs with Large Groups

We prove that the necessary divisibility conditions are sufficient for the existence of resolvable group divisible designs with a fixed number of sufficiently large groups. Our method combines an application of the Rees product construction with a streamlined recursion based on incomplete transversal designs. With similar techniques, we also obtain new results on decompositions of complete mult...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Pure and Apllied Mathematics

سال: 2015

ISSN: 1311-8080,1314-3395

DOI: 10.12732/ijpam.v104i1.2